Time-Dependent Density-Functional Theory
-10%
portes grátis
Time-Dependent Density-Functional Theory
Concepts and Applications
Ullrich, Carsten A.
Oxford University Press
05/2019
536
Mole
Inglês
9780198841937
15 a 20 dias
908
Descrição não disponível.
1: Introduction
2: Review of ground-state density-functional theory
3: Fundamental existence theorems
4: Time-dependent Kohn-Sham scheme
5: Time-dependent observables
6: Properties of the time-dependent xc potential
7: The formal framework of linear-response TDDFT
8: The frequency-dependent xc kernel
9: Applications in atomic and molecular systems
10: Time-dependent current-DFT
11: Time-dependent optimized effective potential
12: Extended systems
13: TDDFT and many-body theory
14: Long-range correlations and dispersion interactions
15: Nanoscale transport and molecular junctions
16: Strong-field phenomena and optimal control
17: Nuclear motion
A: Atomic units
B: Functionals and functional derivatives
C: Densities and density matrices
D: Hartree-Fock and other wave-function approaches
E: Constructing the xc potential from a given density
F: DFT for excited states
G: Systems with noncollinear spin
H: The dipole approximation
I: A brief review of classical fluid dynamics
J: Constructing the scalar from the tensor xc kernel
K: Semiconductor quantum wells
L: TDDFT in a Lagrangian frame
M: Inversion of the dielectric matrix
N: Review literature in DFT and many-body theory
O: TDDFT computer codes
2: Review of ground-state density-functional theory
3: Fundamental existence theorems
4: Time-dependent Kohn-Sham scheme
5: Time-dependent observables
6: Properties of the time-dependent xc potential
7: The formal framework of linear-response TDDFT
8: The frequency-dependent xc kernel
9: Applications in atomic and molecular systems
10: Time-dependent current-DFT
11: Time-dependent optimized effective potential
12: Extended systems
13: TDDFT and many-body theory
14: Long-range correlations and dispersion interactions
15: Nanoscale transport and molecular junctions
16: Strong-field phenomena and optimal control
17: Nuclear motion
A: Atomic units
B: Functionals and functional derivatives
C: Densities and density matrices
D: Hartree-Fock and other wave-function approaches
E: Constructing the xc potential from a given density
F: DFT for excited states
G: Systems with noncollinear spin
H: The dipole approximation
I: A brief review of classical fluid dynamics
J: Constructing the scalar from the tensor xc kernel
K: Semiconductor quantum wells
L: TDDFT in a Lagrangian frame
M: Inversion of the dielectric matrix
N: Review literature in DFT and many-body theory
O: TDDFT computer codes
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
1: Introduction
2: Review of ground-state density-functional theory
3: Fundamental existence theorems
4: Time-dependent Kohn-Sham scheme
5: Time-dependent observables
6: Properties of the time-dependent xc potential
7: The formal framework of linear-response TDDFT
8: The frequency-dependent xc kernel
9: Applications in atomic and molecular systems
10: Time-dependent current-DFT
11: Time-dependent optimized effective potential
12: Extended systems
13: TDDFT and many-body theory
14: Long-range correlations and dispersion interactions
15: Nanoscale transport and molecular junctions
16: Strong-field phenomena and optimal control
17: Nuclear motion
A: Atomic units
B: Functionals and functional derivatives
C: Densities and density matrices
D: Hartree-Fock and other wave-function approaches
E: Constructing the xc potential from a given density
F: DFT for excited states
G: Systems with noncollinear spin
H: The dipole approximation
I: A brief review of classical fluid dynamics
J: Constructing the scalar from the tensor xc kernel
K: Semiconductor quantum wells
L: TDDFT in a Lagrangian frame
M: Inversion of the dielectric matrix
N: Review literature in DFT and many-body theory
O: TDDFT computer codes
2: Review of ground-state density-functional theory
3: Fundamental existence theorems
4: Time-dependent Kohn-Sham scheme
5: Time-dependent observables
6: Properties of the time-dependent xc potential
7: The formal framework of linear-response TDDFT
8: The frequency-dependent xc kernel
9: Applications in atomic and molecular systems
10: Time-dependent current-DFT
11: Time-dependent optimized effective potential
12: Extended systems
13: TDDFT and many-body theory
14: Long-range correlations and dispersion interactions
15: Nanoscale transport and molecular junctions
16: Strong-field phenomena and optimal control
17: Nuclear motion
A: Atomic units
B: Functionals and functional derivatives
C: Densities and density matrices
D: Hartree-Fock and other wave-function approaches
E: Constructing the xc potential from a given density
F: DFT for excited states
G: Systems with noncollinear spin
H: The dipole approximation
I: A brief review of classical fluid dynamics
J: Constructing the scalar from the tensor xc kernel
K: Semiconductor quantum wells
L: TDDFT in a Lagrangian frame
M: Inversion of the dielectric matrix
N: Review literature in DFT and many-body theory
O: TDDFT computer codes
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.