Continuum Mechanics of Solids
-10%
portes grátis
Continuum Mechanics of Solids
Govindjee, Sanjay; Anand, Lallit
Oxford University Press
07/2020
736
Dura
Inglês
9780198864721
15 a 20 dias
1670
Descrição não disponível.
I Vectors and Tensors
1: Vectors and tensors: Algebra
2: Vectors and tensors: Analysis
II Kinematics
3: Kinematics
III Balance Laws
4: Balance laws for mass, forces, and moments
5: Balance of energy and entropy imbalance
6: Balance laws for small deformations
IV Linear Elasticity
7: Constitutive equations for linear elasticity
8: Linear elastostatics
9: Solutions for some classical problems in linear elastostatics
V Variational Formulations
10: Variational formulation of boundary value problems
11: Introduction to the finite element method
12: Minimum principles
VI Elastodynamics, Sinusoidal Progressive Waves
13: Elastodynamics, Sinusoidal progressive waves
VII Coupled Theories
14: Linear thermoelasticity
15: Chemoelasticity
16: Linear poroelasticity
17: Chemoelasticity theory for energy storage materials
18: Linear piezoelectricity
VIII Limits to Elastic Response, Yielding and Plasticity
19: Limits to elastic response. Yielding and failure
20: One-dimensional plasticity
21: Three-dimensional plasticity with isotropic hardening
22: Plasticity with kinematic and isotropic hardening
23: Postulate of maximum dissipation
24: Some classical problems in rate-independent plasticity
25: Rigid-perfectly-plastic materials. Two extremum principles
IX Fracture and Fatigue
26: Linear elastic fracture mechanics
27: Energy-based approach to fracture
28: Fatigue
X Linear Viscoelasticity
29: Linear viscoelasticity
XI Finite Elasticity
30: Finite elasticity
31: Finite elasticity of elastomeric materials
XII Appendices
A: Cylindrical and Spherical coordinate systems
B: Stress intensity factors for some crack configurations
1: Vectors and tensors: Algebra
2: Vectors and tensors: Analysis
II Kinematics
3: Kinematics
III Balance Laws
4: Balance laws for mass, forces, and moments
5: Balance of energy and entropy imbalance
6: Balance laws for small deformations
IV Linear Elasticity
7: Constitutive equations for linear elasticity
8: Linear elastostatics
9: Solutions for some classical problems in linear elastostatics
V Variational Formulations
10: Variational formulation of boundary value problems
11: Introduction to the finite element method
12: Minimum principles
VI Elastodynamics, Sinusoidal Progressive Waves
13: Elastodynamics, Sinusoidal progressive waves
VII Coupled Theories
14: Linear thermoelasticity
15: Chemoelasticity
16: Linear poroelasticity
17: Chemoelasticity theory for energy storage materials
18: Linear piezoelectricity
VIII Limits to Elastic Response, Yielding and Plasticity
19: Limits to elastic response. Yielding and failure
20: One-dimensional plasticity
21: Three-dimensional plasticity with isotropic hardening
22: Plasticity with kinematic and isotropic hardening
23: Postulate of maximum dissipation
24: Some classical problems in rate-independent plasticity
25: Rigid-perfectly-plastic materials. Two extremum principles
IX Fracture and Fatigue
26: Linear elastic fracture mechanics
27: Energy-based approach to fracture
28: Fatigue
X Linear Viscoelasticity
29: Linear viscoelasticity
XI Finite Elasticity
30: Finite elasticity
31: Finite elasticity of elastomeric materials
XII Appendices
A: Cylindrical and Spherical coordinate systems
B: Stress intensity factors for some crack configurations
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
I Vectors and Tensors
1: Vectors and tensors: Algebra
2: Vectors and tensors: Analysis
II Kinematics
3: Kinematics
III Balance Laws
4: Balance laws for mass, forces, and moments
5: Balance of energy and entropy imbalance
6: Balance laws for small deformations
IV Linear Elasticity
7: Constitutive equations for linear elasticity
8: Linear elastostatics
9: Solutions for some classical problems in linear elastostatics
V Variational Formulations
10: Variational formulation of boundary value problems
11: Introduction to the finite element method
12: Minimum principles
VI Elastodynamics, Sinusoidal Progressive Waves
13: Elastodynamics, Sinusoidal progressive waves
VII Coupled Theories
14: Linear thermoelasticity
15: Chemoelasticity
16: Linear poroelasticity
17: Chemoelasticity theory for energy storage materials
18: Linear piezoelectricity
VIII Limits to Elastic Response, Yielding and Plasticity
19: Limits to elastic response. Yielding and failure
20: One-dimensional plasticity
21: Three-dimensional plasticity with isotropic hardening
22: Plasticity with kinematic and isotropic hardening
23: Postulate of maximum dissipation
24: Some classical problems in rate-independent plasticity
25: Rigid-perfectly-plastic materials. Two extremum principles
IX Fracture and Fatigue
26: Linear elastic fracture mechanics
27: Energy-based approach to fracture
28: Fatigue
X Linear Viscoelasticity
29: Linear viscoelasticity
XI Finite Elasticity
30: Finite elasticity
31: Finite elasticity of elastomeric materials
XII Appendices
A: Cylindrical and Spherical coordinate systems
B: Stress intensity factors for some crack configurations
1: Vectors and tensors: Algebra
2: Vectors and tensors: Analysis
II Kinematics
3: Kinematics
III Balance Laws
4: Balance laws for mass, forces, and moments
5: Balance of energy and entropy imbalance
6: Balance laws for small deformations
IV Linear Elasticity
7: Constitutive equations for linear elasticity
8: Linear elastostatics
9: Solutions for some classical problems in linear elastostatics
V Variational Formulations
10: Variational formulation of boundary value problems
11: Introduction to the finite element method
12: Minimum principles
VI Elastodynamics, Sinusoidal Progressive Waves
13: Elastodynamics, Sinusoidal progressive waves
VII Coupled Theories
14: Linear thermoelasticity
15: Chemoelasticity
16: Linear poroelasticity
17: Chemoelasticity theory for energy storage materials
18: Linear piezoelectricity
VIII Limits to Elastic Response, Yielding and Plasticity
19: Limits to elastic response. Yielding and failure
20: One-dimensional plasticity
21: Three-dimensional plasticity with isotropic hardening
22: Plasticity with kinematic and isotropic hardening
23: Postulate of maximum dissipation
24: Some classical problems in rate-independent plasticity
25: Rigid-perfectly-plastic materials. Two extremum principles
IX Fracture and Fatigue
26: Linear elastic fracture mechanics
27: Energy-based approach to fracture
28: Fatigue
X Linear Viscoelasticity
29: Linear viscoelasticity
XI Finite Elasticity
30: Finite elasticity
31: Finite elasticity of elastomeric materials
XII Appendices
A: Cylindrical and Spherical coordinate systems
B: Stress intensity factors for some crack configurations
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.